Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38474527

RESUMO

The high toxicity of arsenic (As) can cause irreversible harm to the environment and human health. In this study, the chlorin e6 (Ce6), which emits fluorescence in the infrared region, was introduced as the luminescence center, and the addition of copper ion (Cu2+) and As(V) provoked a regular change in fluorescence at 652 nm, whereas that of As(III) was 665 nm, which was used to optionally detect Cu2+, arsenic (As(III), and As(V)). The limit of detection (LOD) values were 0.212 µM, 0.089 ppm, and 1.375 ppb for Cu2+, As(III), and As(V), respectively. The developed method can be used to determine Cu2+ and arsenic in water and soil with good sensitivity and selectivity. The 1:1 stoichiometry of Ce6 with Cu2+ was obtained from the Job plot that was developed from UV-visible spectra. The binding constants for Cu2+ and As(V) were established to be 1.248 × 105 M-1 and 2.35 × 1012 M-2, respectively, using B-H (Benesi-Hildebrand) plots. Fluorescence lifetimes, B-H plots, FT-IR, and 1H-NMR were used to postulate the mechanism of Cu2+ fluorescence quenching and As(V) fluorescence restoration and the interactions of the two ions with the Ce6 molecule.


Assuntos
Arsênio , Clorofilídeos , Porfirinas , Humanos , Cobre/química , Espectroscopia de Infravermelho com Transformada de Fourier , Íons , Espectrometria de Fluorescência , Corantes Fluorescentes/química
2.
Talanta ; 271: 125708, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295443

RESUMO

A Mn decorated zeolitic imidazolate framework-90 (ZIF-90) nanozyme (Mn/ZIF-90) was constructed through an effective and rapid post-synthetic strategy for the first time. The Mn in Mn/ZIF-90 exists in mixed valence states, which is doped to the ZIF-90 through the formation of Mn-O bond. The Zn-N coordination structure of ZIF-90 may change the electronic arrangement of oxygen atoms in the free carbonyl groups (-CHO), allowing the coordination of Mn with O. The prepared Mn/ZIF-90 possesses outstanding oxidase-like activity and remarkable stability. Besides, the catalytic activity of Mn/ZIF-90 can be inhibited in the presence of H2O2. Therefore, using the Mn/ZIF-90-triggered chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) as an amplifier, a versatile enzyme cascade-based colorimetric method for the detection of glucose and choline with good sensitivity and selectivity was developed. The linear ranges for glucose and choline are 6.25-500 µM and 5-1000 µM, respectively. Furthermore, the developed method was applied in the detection of glucose and choline in rabbit plasma samples, and the recoveries are 89.5-107.3 % and 96.0-109.3 %, respectively. In short, the simple and efficient post-synthetic doping method may provide a new thought for the rational designs of enzyme mimics with improved catalytic performance. Moreover, the colorimetric method based on the excellent catalytic activity of Mn/ZIF-90 may be extended to detect other H2O2-generating or consuming molecules and evaluate the activity of bio-enzymes that can catalyze the generation of glucose or choline.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanoestruturas , Zeolitas , Coelhos , Animais , Oxirredutases/química , Glucose , Zeolitas/química , Colorimetria/métodos , Peróxido de Hidrogênio , Colina
3.
Heliyon ; 9(11): e22099, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027898

RESUMO

Due to the copper (Cu) active sites, its complexes with oxidase-like activity have superior catalytic properties, which can catalyze a series of specific substrates like 3,3',5,5'-tetramethylbenzidine (TMB), producing colorimetric reactions for the detection of different reducing small-molecule compounds. Attribute to the competitive coordination effects between water molecules and central Cu ions, most of the Cu complexes can hardly be used in the pure aqueous reaction system. In this study, a Cu-based material (Cu-imidazole-2-carboxaldehyde, Cu-ICA) was prepared using copper ions and ICA through a one-step process in the water solution. After the morphology of the material being characterized, the mimetic enzyme behavior of the Cu-ICA was demonstrated through the TMB oxidation. Compared to the other reported oxidase-like mimics, Cu-ICA has better aqueous stability and oxidase-like activity, and shows a higher vmax. Furthermore, basing on the oxidase-like activity of Cu-ICA, a colorimetric method was developed for the ascorbic acid and glutathione detections with linear ranges of 0.5-5 µM and 0.5-4 µM, and limit of detection of 0.1304 µM and 0.097 µM, respectively. Owing to its excellent aqueous stability and oxidase-like activity, Cu-ICA has bright application prospects in the analysis of reducing small-molecule compounds.

4.
Sensors (Basel) ; 23(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836965

RESUMO

Phenolic compounds are one of the main organic pollutants in the environment that can seriously affect ecosystems, even at very low concentrations. Due to the resistance of phenolic compounds to microorganisms, conventional biological treatment methods face challenges in effectively addressing this pollution problem. In this study, a novel laccase mimic (Tris-Cu nanozyme) is prepared using a simple and rapid synthesis strategy based on the coordination of copper ions and amino groups in Tris(hydroxymethyl)aminomethane (Tris). It is found that the Tris-Cu nanozyme exhibits good catalytic activity against a variety of phenolic compounds, the Km, Vmax and Kcat are determined to be 0.18 mM, 15.62 µM·min-1 and 1.57 × 107 min-1 using 2,4-dichlorophenol (2,4-DP) as the substrate, respectively. Then, based on the laccase-like activity of the Tris-Cu nanozyme, a novel colorimetric method for 2,4-DP (the limit of detection (LOD) = 2.4 µM, S/N = 3) detection in the range of 10-400 µM was established, and its accuracy was verified by analyzing tap and lake water samples. In addition, the Tris-Cu nanozyme shows excellent removal abilities for six phenolic compounds in experiments. The removal percentages for 2,4-DP, 2-chlorophenol (2-CP), phenol, resorcinol, 2,6-dimethoxyphenol (2,6-DOP), and bisphenol A (BPA) are 100%, 100%, 100%, 100%, 87%, and 81% at 1 h, respectively. In the simulated effluent, the Tris-Cu nanozyme maintains its efficient catalytic activity towards 2,4-DP, with a degradation percentage of 76.36% at 7 min and a reaction rate constant (k0) of 0.2304 min-1. Therefore, this metal-organic complex shows promise for applications in the monitoring and degrading of environmental pollutants.


Assuntos
Complexos de Coordenação , Lacase , Lacase/química , Cobre/química , Ecossistema , Fenóis , Colorimetria/métodos
5.
Anal Chim Acta ; 1279: 341771, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827670

RESUMO

BACKGROUND: With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS: The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 µM min-1, 6.70 µM min-1, and 2.24 µM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 µM (R2 = 0.9951), 5.0-100.0 µM (R2 = 0.9970), and 5.0-200.0 µM (R2 = 0.9924) with the limits of quantitation of 20.0 µM, 5.0 µM, and 5.0 µM, respectively. SIGNIFICANCE: In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.


Assuntos
Peróxido de Hidrogênio , Fosfatos , Cobre , Lacase , Epinefrina , Glutationa , Peroxidase , Peroxidases , Adenina , Colorimetria , Corantes , Fenóis
6.
J Pharm Biomed Anal ; 236: 115695, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37672902

RESUMO

Nanomaterials with enzyme-like activity have been widely used in the construction of colorimetric and fluorescence sensors due to their advantages of cost-effectiveness, high stability, good biocompatibility, and ease of modification. Furthermore, the colorimetric and fluorescence sensors, which are effective approaches for detecting bioactive small-molecule compounds, have been extensively explored due to their simple operation and high sensitivity. Recent significant researches have focused on designing various sensors based on nanozymes with peroxidase- and oxidase-like activity for the colorimetric and fluorescence analysis of different analytes. In this review, recent developments (from 2018 to present) in the colorimetric and fluorescent analysis of bioactive small-molecule compounds based on the enzyme-like activity of nanomaterials were summarized. In addition, the challenges and design strategies in developing colorimetric and fluorescent assays with high performance and specific sensing were discussed.


Assuntos
Colorimetria , Nanoestruturas , Peroxidases , Corantes
7.
Nanoscale Adv ; 5(18): 4950-4967, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705801

RESUMO

The combined application of nanozymes and natural enzymes has received widespread attention in recent years. In this work, a simple and efficient method was used to synthesize a composite material of CuO nanoparticle-modified zeolitic imidazolate framework-8 (CuO NPs@ZIF-8) with multiple enzyme activities (glucose oxidase-like and hydrolase-like activities) to detect the activity of natural enzymes through fluorescence and colorimetric (UV-vis) dual-mode detection. The hydrolase- and oxidase-like activities of CuO NPs@ZIF-8 show an acceptable affinity with l-ascorbic acid 2-phosphate trisodium (AAP) and o-phenylenediamine (OPD). Using the developed sensor, highly sensitive detection of natural enzymes glucose oxidase (GOX) and alkaline phosphatase (ALP) was achieved through both fluorescent and colorimetric analyses with a wide linear range (fluorescence for GOX: 0.86-1.23 × 105 mU mL-1, UV-vis for GOX: 0.081-1.62 × 105 mU mL-1; fluorescence for ALP: 0.042-1.20 × 104 mU mL-1, UV-vis for ALP: 0.0046-1.23 × 104 mU mL-1) and low LOQs (fluorescence for GOX: 0.86 mU mL-1, UV-vis for GOX: 0.081 mU mL-1; fluorescence for ALP: 0.042 mU mL-1, UV-vis for ALP: 0.0046 mU mL-1). Compared to the other fluorescent and colorimetric sensors, this sensor has better catalytic activity due to the addition of GOX and ALP, which can amplify the detection signal and improve the sensitivity. This is the first time that composite material CuO NPs@ZIF-8 with "tandem enzyme" activity was synthesized and applied in the detection of enzyme activity. Additionally, the proposed fluorescent and UV-vis platforms exhibit the capability to detect GOX and ALP in serum samples with satisfactory recovery, indicating potential application prospects in biochemical analysis.

8.
Molecules ; 28(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37513444

RESUMO

A core-shell-derived structural magnetic zeolite imidazolate framework-67 (Fe3O4-COOH@ZIF-67) nanocomposite was fabricated through a single-step coating of zeolite imidazolate framework-67 on glutaric anhydride-functionalized Fe3O4 nanosphere for the magnetic solid-phase extraction (MSPE) of theophylline (TP). The Fe3O4-COOH@ZIF-67 nanocomposite was characterized through scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, Zeta potential analysis, X-ray diffraction, Brunauer-Emmett-Teller, and vibrating sample magnetometer. The material has a high specific surface area and good magnetism, which maintains the regular dodecahedron structure of ZIF-67 without being destroyed by the addition of Fe3O4-COOH nanospheres. The Fe3O4-COOH@ZIF-67 can rapidly adsorb TP mainly through the strong coordination interaction between undercoordinated Co2+ on ZIF-67 and -NH from imidazole of TP. The adsorption and desorption conditions, such as the amount of adsorbent, adsorption time, pH value, and elution solvent, were optimized. The kinetics of TP adsorption on Fe3O4-COOH@ZIF-67 was found to follow pseudo-second-order kinetics. The Langmuir model fits the adsorption data well and the maximum adsorption capacity is 1764 mg/g. Finally, the developed MSPE-HPLC method was applied in the enrichment and analysis of TP in four tea samples and rabbit plasma. TP was not detected in oolong tea and rabbit plasma, and its contents in jasmine tea, black tea, and green tea are 5.80, 4.31, and 1.53 µg/g, respectively. The recoveries of spiked samples are between 74.41% and 86.07% with RSD in the range of 0.81-3.83%. The adsorption performance of Fe3O4-COOH@ZIF-67 nanocomposite was nearly unchanged after being stored at room temperature for at least 80 days and two consecutive adsorption-desorption cycles. The results demonstrate that Fe3O4-COOH@ZIF-67 nanocomposite is a promising magnetic adsorbent for the preconcentration of TP in complex samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...